Generalized Isoperimetric Problem
نویسنده
چکیده
In this paper the diierential equations describing the minimal length curves satisfying the integral constraining relations of a general type are obtained. Moreover, an additional necessary condition supplementing Pontryagin maximum principle for the generalized isoperimetric problem is established. All results are illustrated by the analysis of generalized Dido's problem.
منابع مشابه
An Edge-Isoperimetric Problem for Powers of the Petersen Graph
In this paper we introduce a new order on the set of n-dimensional tuples and prove that this order preserves nestedness in the edge isoperimetric problem for the graph Pn, defined as the nth cartesian power of the well-known Petersen graph. The cutwidth and wirelength of Pn are also derived. These results are then generalized for the cartesian product of Pn and the m-dimensional binary hypercube.
متن کاملA proof of an extension of the icosahedral conjecture of Steiner for generalized deltahedra
In this note we introduce a new family of convex polyhedra which we call the family of generalized deltahedra or in short, the family of g-deltahedra. Here a g-deltahedron is a convex polyhedron in Euclidean 3-space whose each face is an edge-to-edge union of some triangles each being congruent to a given regular triangle. Steiner’s famous icosahedral conjecture (1841) says that among all conve...
متن کاملA Generalized Affine Isoperimetric Inequality
A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.
متن کاملIsoperimetric Numbers of Cayley Graphs Arising from Generalized Dihedral Groups
Let n, x be positive integers satisfying 1 < x < n. Let Hn,x be a group admitting a presentation of the form 〈a, b | a = b = (ba) = 1〉. When x = 2 the group Hn,x is the familiar dihedral group, D2n. Groups of the form Hn,x will be referred to as generalized dihedral groups. It is possible to associate a cubic Cayley graph to each such group, and we consider the problem of finding the isoperimet...
متن کاملA sharp isoperimetric bound for convex bodies
We consider the problem of lower bounding a generalized Minkowski measure of subsets of a convex body with a log-concave probability measure, conditioned on the set size. A bound is given in terms of diameter and set size, which is sharp for all set sizes, dimensions, and norms. In the case of uniform density a stronger theorem is shown which is also sharp.
متن کامل